Wnt signaling enhances FGF2-triggered lens fiber cell differentiation.
نویسندگان
چکیده
Wnt signaling is implicated in many developmental processes, including cell fate changes. Several members of the Wnt family, as well as other molecules involved in Wnt signaling, including Frizzled receptors, LDL-related protein co-receptors, members of the Dishevelled and Dickkopf families, are known to be expressed in the lens during embryonic or postembryonic development. However, the function of Wnt signaling in lens fiber differentiation remains unknown. Here, we show that GSK-3beta kinase is inactivated and that beta-catenin accumulates during the early stages of lens fiber cell differentiation. In an explant culture system, Wnt conditioned medium (CM) induced the accumulation of beta-crystallin, a marker of fiber cell differentiation, without changing cell shape. In contrast, epithelial cells stimulated with Wnt after priming with FGF elongated, accumulated beta-crystallin, aquaporin-0, p57kip2, and altered their expression of cadherins. Treatment with lithium, which stabilizes beta-catenin, induced the accumulation of beta-crystallin, but explants treated with lithium after FGF priming did not elongate as they did after Wnt application. These results show that Wnts promote the morphological aspects of fiber cell differentiation in a process that requires FGF signaling, but is independent of beta-catenin. Wnt signaling may play an important role in lens epithelial-to-fiber differentiation.
منابع مشابه
Identification and Characterization of FGF2-Dependent mRNA: microRNA Networks During Lens Fiber Cell Differentiation
MicroRNAs (miRNAs) and fibroblast growth factor (FGF) signaling regulate a wide range of cellular functions, including cell specification, proliferation, migration, differentiation, and survival. In lens, both these systems control lens fiber cell differentiation; however, a possible link between these processes remains to be examined. Herein, the functional requirement for miRNAs in differenti...
متن کاملEctopic Activation of Wnt/β-Catenin Signaling in Lens Fiber Cells Results in Cataract Formation and Aberrant Fiber Cell Differentiation
The Wnt/β-catenin signaling pathway controls many processes during development, including cell proliferation, cell differentiation and tissue homeostasis, and its aberrant regulation has been linked to various pathologies. In this study we investigated the effect of ectopic activation of Wnt/β-catenin signaling during lens fiber cell differentiation. To activate Wnt/β-catenin signaling in lens ...
متن کاملKynurenine inhibits fibroblast growth factor 2-mediated expression of crystallins and MIP26 in lens epithelial cells.
Fibroblast growth factor-2 (FGF2)-mediated signaling plays an important role in fiber cell differentiation in eye lens. We had previously shown that kynurenine (KYN) produced from the overexpression of indoleamine 2,3-dioxygenase (IDO) causes defects in the differentiation of fiber cells, induces fiber cell apoptosis and cataract formation in the mouse lens, and leads to cell cycle arrest in cu...
متن کاملBiphasic effects of FGF2 on odontoblast differentiation involve changes in the BMP and Wnt signaling pathways.
Odontoblast differentiation during physiological and reparative dentinogenesis is dependent upon multiple signaling molecules, including fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs) and Wingless/Integrated (Wnt) ligands. Recent studies in our laboratory showed that continuous exposure of primary dental pulp cultures to FGF2 exerted biphasic effects on the expression of m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 131 8 شماره
صفحات -
تاریخ انتشار 2004